HashMap底层实现详解

/ 语言 / 没有评论 / 2118浏览

前段时间面试 无论是58,还是京东 还是阿里 都问了Map的底层实现,小马哥又仔细看了看源码!

-----------------来自小马哥的故事

HashMap概述:

  HashMap是基于哈希表的Map接口的非同步实现(Hashtable跟HashMap很像,唯一的区别是Hashtalbe中的方法是线程安全的,也就是同步的)。此实现提供所有可选的映射操作,并允许使用null值和null键。此类不保证映射的顺序,特别是它不保证该顺序恒久不变。

HashMap的数据结构:

  在java编程语言中,最基本的结构就是两种,一个是数组,另外一个是模拟指针(引用),所有的数据结构都可以用这两个基本结构来构造的,HashMap也不例外。HashMap实际上是一个“链表的数组”的数据结构,每个元素存放链表头结点的数组,即数组和链表的结合体。

map底层数据结构

从上图中可以看出,HashMap底层就是一个数组,数组中的每一项又是一个链表。当新建一个HashMap的时候,就会初始化一个数组。源码如下:


/** 
 * The table, resized as necessary. Length MUST Always be a power of two. 
 */  
transient Entry[] table;  
  
static class Entry<K,V> implements Map.Entry<K,V> {  
    final K key;  
    V value;  
    Entry<K,V> next;  
    final int hash;  
    ……  
}  

可以看出,Entry就是数组中的元素,每个Map.Entry就是一个key-value对,它持有一个指向下一个元素的引用,这就构成了链表。

HashMap的存取实现:

存储

public V put(K key, V value) {  
    // HashMap允许存放null键和null值。  
    // 当key为null时,调用putForNullKey方法,将value放置在数组第一个位置。  
    if (key == null)  
        return putForNullKey(value);  
    // 根据key的hashCode重新计算hash值。  
    int hash = hash(key.hashCode());  
    // 搜索指定hash值所对应table中的索引。  
    int i = indexFor(hash, table.length);  
    // 如果 i 索引处的 Entry 不为 null,通过循环不断遍历 e 元素的下一个元素。  
    for (Entry<K,V> e = table[i]; e != null; e = e.next) {  
        Object k;  
        if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {  
            V oldValue = e.value;  
            e.value = value;  
            e.recordAccess(this);  
            return oldValue;  
        }  
    }  
    // 如果i索引处的Entry为null,表明此处还没有Entry。  
    // modCount记录HashMap中修改结构的次数  
    modCount++;  
    // 将key、value添加到i索引处。  
    addEntry(hash, key, value, i);  
    return null;  
} 

从上面的源代码中可以看出:当我们往HashMap中put元素的时候,先根据key的hashCode重新计算hash值,根据hash值得到这个元素在数组中的位置(即下标),如果数组该位置上已经存放有其他元素了,那么在这个位置上的元素将以链表的形式存放,新加入的放在链头,最先加入的放在链尾。如果数组该位置上没有元素,就直接将该元素放到此数组中的该位置上。

  addEntry(hash, key, value, i)方法根据计算出的hash值,将key-value对放在数组table的 i 索引处。addEntry 是HashMap 提供的一个包访问权限的方法(就是没有public,protected,private这三个访问权限修饰词修饰,为默认的访问权限,用default表示,但在代码中没有这个default),代码如下:


void addEntry(int hash, K key, V value, int bucketIndex) {  
    // 获取指定 bucketIndex 索引处的 Entry   
    Entry<K,V> e = table[bucketIndex];  
    // 将新创建的 Entry 放入 bucketIndex 索引处,并让新的 Entry 指向原来的 Entry  
    table[bucketIndex] = new Entry<K,V>(hash, key, value, e);  
    // 如果 Map 中的 key-value 对的数量超过了极限  
    if (size++ >= threshold)  
    // 把 table 对象的长度扩充到原来的2倍。  
        resize(2 * table.length);  
}  

当系统决定存储HashMap中的key-value对时,完全没有考虑Entry中的value,仅仅只是根据key来计算并决定每个Entry的存储位置。我们完全可以把 Map 集合中的 value 当成 key 的附属,当系统决定了 key 的存储位置之后,value 随之保存在那里即可。

  hash(int h)方法根据key的hashCode重新计算一次散列。此算法加入了高位计算,防止低位不变,高位变化时,造成的hash冲突。


static int hash(int h) {  
    h ^= (h >>> 20) ^ (h >>> 12);  
    return h ^ (h >>> 7) ^ (h >>> 4);  
}

我们可以看到在HashMap中要找到某个元素,需要根据key的hash值来求得对应数组中的位置。如何计算这个位置就是hash算法。前面说过HashMap的数据结构是数组和链表的结合,所以我们当然希望这个HashMap里面的 元素位置尽量的分布均匀些,尽量使得每个位置上的元素数量只有一个,那么当我们用hash算法求得这个位置的时候,马上就可以知道对应位置的元素就是我们要的,而不用再去遍历链表,这样就大大优化了查询的效率。

  对于任意给定的对象,只要它的 hashCode() 返回值相同,那么程序调用 hash(int h) 方法所计算得到的 hash 码值总是相同的。我们首先想到的就是把hash值对数组长度取模运算,这样一来,元素的分布相对来说是比较均匀的。但是,“模”运算的消耗还是比较大的,在HashMap中是这样做的:调用 indexFor(int h, int length) 方法来计算该对象应该保存在 table 数组的哪个索引处。indexFor(int h, int length) 方法的代码如下:


static int indexFor(int h, int length) {  
    return h & (length-1);  
}  

这个方法非常巧妙,它通过 h & (table.length -1) 来得到该对象的保存位,而HashMap底层数组的长度总是 2 的n 次方,这是HashMap在速度上的优化。在 HashMap 构造器中有如下代码:

这段代码保证初始化时HashMap的容量总是2的n次方,即底层数组的长度总是为2的n次方。

  当length总是 2 的n次方时,h& (length-1)运算等价于对length取模,也就是h%length,但是&比%具有更高的效率。

  这看上去很简单,其实比较有玄机的,我们举个例子来说明:

  假设数组长度分别为15和16,优化后的hash码分别为8和9,那么&运算后的结果如下:

   h & (table.length-1)                     hash                             table.length-1

   8 & (15-1):                                 0100                   &              1110                   =                0100

   9 & (15-1):                                 0101                   &              1110                   =                0100

  -----------------------------------------------------------------------------------------------------------------------

   8 & (16-1):                                 0100                   &              1111                   =                0100

   9 & (16-1):                                 0101                   &              1111                   =                0101

  -----------------------------------------------------------------------------------------------------------------------

从上面的例子中可以看出:当8、9两个数和(15-1)2=(1110)进行“与运算&”的时候,产生了相同的结果,都为0100,也就是说它们会定位到数组中的同一个位置上去,这就产生了碰撞,8和9会被放到数组中的同一个位置上形成链表,那么查询的时候就需要遍历这个链 表,得到8或者9,这样就降低了查询的效率。同时,我们也可以发现,当数组长度为15的时候,hash值会与(15-1)2=(1110)进行“与运算&”,那么最后一位永远是0,而0001,0011,0101,1001,1011,0111,1101这几个位置永远都不能存放元素了,空间浪费相当大,更糟的是这种情况中,数组可以使用的位置比数组长度小了很多,这意味着进一步增加了碰撞的几率,减慢了查询的效率!

  而当数组长度为16时,即为2的n次方时,2n-1得到的二进制数的每个位上的值都为1(比如(24-1)2=1111),这使得在低位上&时,得到的和原hash的低位相同,加之hash(int h)方法对key的hashCode的进一步优化,加入了高位计算,就使得只有相同的hash值的两个值才会被放到数组中的同一个位置上形成链表。

  所以说,当数组长度为2的n次幂的时候,不同的key算得得index相同的几率较小,那么数据在数组上分布就比较均匀,也就是说碰撞的几率小,相对的,查询的时候就不用遍历某个位置上的链表,这样查询效率也就较高了。

  根据上面 put 方法的源代码可以看出,当程序试图将一个key-value对放入HashMap中时,程序首先根据该 key的 hashCode() 返回值决定该 Entry 的存储位置:如果两个 Entry 的 key 的 hashCode() 返回值相同,那它们的存储位置相同。如果这两个 Entry 的 key 通过 equals 比较返回 true,新添加 Entry 的 value 将覆盖集合中原有Entry 的 value,但key不会覆盖。如果这两个 Entry 的 key 通过 equals 比较返回 false,新添加的 Entry 将与集合中原有 Entry 形成 Entry 链,而且新添加的 Entry 位于 Entry 链的头部——具体说明继续看 addEntry() 方法的说明。

读取:


public V get(Object key) {  
    if (key == null)  
        return getForNullKey();  
    int hash = hash(key.hashCode());  
    for (Entry<K,V> e = table[indexFor(hash, table.length)];  
        e != null;  
        e = e.next) {  
        Object k;  
        if (e.hash == hash && ((k = e.key) == key || key.equals(k)))  
            return e.value;  
    }  
    return null;  
}  

有了上面存储时的hash算法作为基础,理解起来这段代码就很容易了。从上面的源代码中可以看出:从HashMap中get元素时,首先计算key的hashCode,找到数组中对应位置的某一元素,然后通过key的equals方法在对应位置的链表中找到需要的元素。

归纳起来简单地说,HashMap 在底层将 key-value 当成一个整体进行处理,这个整体就是一个 Entry 对象。HashMap 底层采用一个 Entry[] 数组来保存所有的 key-value 对,当需要存储一个 Entry 对象时,会根据hash算法来决定其在数组中的存储位置,在根据equals方法决定其在该数组位置上的链表中的存储位置;当需要取出一个Entry时,也会根据hash算法找到其在数组中的存储位置,再根据equals方法从该位置上的链表中取出该Entry。

HashMap的resize(rehash):

当HashMap中的元素越来越多的时候,hash冲突的几率也就越来越高,因为数组的长度是固定的。所以为了提高查询的效率,就要对HashMap的数组进行扩容,数组扩容这个操作也会出现在ArrayList中,这是一个常用的操作,而在HashMap数组扩容之后,最消耗性能的点就出现了:原数组中的数据必须重新计算其在新数组中的位置,并放进去,这就是resize。

  那么HashMap什么时候进行扩容呢?当HashMap中的元素个数超过数组大小loadFactor时,就会进行数组扩容,loadFactor的默认值为0.75,这是一个折中的取值。也就是说,默认情况下,数组大小为16,那么当HashMap中元素个数超过160.75=12(这个值就是代码中的threshold值,也叫做临界值)的时候,就把数组的大小扩展为 2*16=32,即扩大一倍,然后重新计算每个元素在数组中的位置,而这是一个非常消耗性能的操作,所以如果我们已经预知HashMap中元素的个数,那么预设元素的个数能够有效的提高HashMap的性能。

HashMap扩容的代码如下所示:


//HashMap数组扩容  
          void resize(int newCapacity) {  
                Entry[] oldTable = table;  
                int oldCapacity = oldTable.length;  
                //如果当前的数组长度已经达到最大值,则不在进行调整  
                if (oldCapacity == MAXIMUM_CAPACITY) {  
                    threshold = Integer.MAX_VALUE;  
                    return;  
                }  
                //根据传入参数的长度定义新的数组  
                Entry[] newTable = new Entry[newCapacity];  
                //按照新的规则,将旧数组中的元素转移到新数组中  
                transfer(newTable);  
                table = newTable;  
                //更新临界值  
                threshold = (int)(newCapacity * loadFactor);  
            }  
  
          //旧数组中元素往新数组中迁移  
            void transfer(Entry[] newTable) {  
                //旧数组  
                Entry[] src = table;  
                //新数组长度  
                int newCapacity = newTable.length;  
                //遍历旧数组  
                for (int j = 0; j < src.length; j++) {  
                    Entry<K,V> e = src[j];  
                    if (e != null) {  
                        src[j] = null;  
                        do {  
                            Entry<K,V> next = e.next;  
                            int i = indexFor(e.hash, newCapacity);  
                            e.next = newTable[i];  
                            newTable[i] = e;  
                            e = next;  
                        } while (e != null);  
                    }  
                }  
            }  

HashMap的性能参数:

HashMap 包含如下几个构造器:

HashMap():构建一个初始容量为 16,负载因子为 0.75 的 HashMap。 HashMap(int initialCapacity):构建一个初始容量为 initialCapacity,负载因子为 0.75 的 HashMap。 HashMap(int initialCapacity, float loadFactor):以指定初始容量、指定的负载因子创建一个 HashMap。 HashMap的基础构造器HashMap(int initialCapacity, float loadFactor)带有两个参数,它们是初始容量initialCapacity和加载因子loadFactor。 initialCapacity:HashMap的最大容量,即为底层数组的长度。 loadFactor:负载因子loadFactor定义为:散列表的实际元素数目(n)/ 散列表的容量(m)。   负载因子衡量的是一个散列表的空间的使用程度,负载因子越大表示散列表的装填程度越高,反之愈小。对于使用链表法的散列表来说,查找一个元素的平均时间是O(1+a),因此如果负载因子越大,对空间的利用更充分,然而后果是查找效率的降低;如果负载因子太小,那么散列表的数据将过于稀疏,对空间造成严重浪费。

  HashMap的实现中,通过threshold字段来判断HashMap的最大容量:

threshold = (int)(capacity * loadFactor);  

结合负载因子的定义公式可知,threshold就是在此loadFactor和capacity对应下允许的最大元素数目,超过这个数目就重新resize,以降低实际的负载因子(也就是说虽然数组长度是capacity,但其扩容的临界值确是threshold)。默认的的负载因子0.75是对空间和时间效率的一个平衡选择。当容量超出此最大容量时, resize后的HashMap容量是容量的两倍:

if (size++ >= threshold)   
	resize(2 * table.length); 

Fail-Fast机制:

  我们知道java.util.HashMap不是线程安全的,因此如果在使用迭代器的过程中有其他线程修改了map,那么将抛出ConcurrentModificationException,这就是所谓fail-fast策略。(这个在core java这本书中也有提到。)

  这一策略在源码中的实现是通过modCount域,modCount顾名思义就是修改次数,对HashMap内容的修改都将增加这个值,那么在迭代器初始化过程中会将这个值赋给迭代器的expectedModCount。


HashIterator() {  
    expectedModCount = modCount;  
    if (size > 0) { // advance to first entry  
    Entry[] t = table;  
    while (index < t.length && (next = t[index++]) == null)  
        ;  
    }  
} 

在迭代过程中,判断modCount跟expectedModCount是否相等,如果不相等就表示已经有其他线程修改了Map:

  注意到modCount声明为volatile,保证线程之间修改的可见性。(volatile之所以线程安全是因为被volatile修饰的变量不保存缓存,直接在内存中修改,因此能够保证线程之间修改的可见性)。


final Entry<K,V> nextEntry() {   
    if (modCount != expectedModCount)   
        throw new ConcurrentModificationException();

在HashMap的API中指出:

  由所有HashMap类的“collection 视图方法”所返回的迭代器都是快速失败的:在迭代器创建之后,如果从结构上对映射进行修改,除非通过迭代器本身的 remove 方法,其他任何时间任何方式的修改,迭代器都将抛出ConcurrentModificationException。因此,面对并发的修改,迭代器很快就会完全失败,而不保证在将来不确定的时间发生任意不确定行为的风险。

  注意,迭代器的快速失败行为不能得到保证,一般来说,存在非同步的并发修改时,不可能作出任何坚决的保证。快速失败迭代器尽最大努力抛出 ConcurrentModificationException。因此,编写依赖于此异常的程序的做法是错误的,正确做法是:迭代器的快速失败行为应该仅用于检测程序错误。