作为一名Java使用者,掌握JVM的体系结构也是很有必要的
-----------------来自小马哥的故事
1.JVM简析:
说起Java,我们首先想到的是Java编程语言,然而事实上,Java是一种技术,它由四方面组成:Java编程语言、Java类文件格式、Java虚拟机和Java应用程序接口(Java API)。它们的关系如下图所示:
Java平台由Java虚拟机和Java应用程序接口搭建,Java语言则是进入这个平台的通道,用Java语言编写并编译的程序可以运行在这个平台上。这个平台的结构如下图所示: 运行期环境代表着Java平台,开发人员编写Java代码(.java文件),然后将之编译成字节码(.class文件),再然后字节码被装入内存,一旦字节码进入虚拟机,它就会被解释器解释执行,或者是被即时代码发生器有选择的转换成机器码执行。
JVM在它的生存周期中有一个明确的任务,那就是运行Java程序,因此当Java程序启动的时候,就产生JVM的一个实例;当程序运行结束的时候,该实例也跟着消失了。 在Java平台的结构中, 可以看出,Java虚拟机(JVM) 处在核心的位置,是程序与底层操作系统和硬件无关的关键。它的下方是移植接口,移植接口由两部分组成:适配器和Java操作系统, 其中依赖于平台的部分称为适配器;JVM 通过移植接口在具体的平台和操作系统上实现;在JVM 的上方是Java的基本类库和扩展类库以及它们的API, 利用Java API编写的应用程序(application) 和小程序(Java applet) 可以在任何Java平台上运行而无需考虑底层平台, 就是因为有Java虚拟机(JVM)实现了程序与操作系统的分离,从而实现了Java 的平台无关性。
- 下面我们从JVM的基本概念和运过程程这两个方面入手来对它进行深入的研究。*
2.JVM基本概念
(1) 基本概念:
JVM是可运行Java代码的假想计算机 ,包括一套字节码指令集、一组寄存器、一个栈、一个垃圾回收,堆 和 一个存储方法域。JVM是运行在操作系统之上的,它与硬件没有直接的交互。
(2) 运行过程:
我们都知道Java源文件,通过编译器,能够生产相应的.Class文件,也就是字节码文件,而字节码文件又通过Java虚拟机中的解释器,编译成特定机器上的机器码 。
也就是如下:
① Java源文件—->编译器—->字节码文件
② 字节码文件—->JVM—->机器码
每一种平台的解释器是不同的,但是实现的虚拟机是相同的,这也就是Java为什么能够跨平台的原因了 ,当一个程序从开始运行,这时虚拟机就开始实例化了,多个程序启动就会存在多个虚拟机实例。程序退出或者关闭,则虚拟机实例消亡,多个虚拟机实例之间数据不能共享。
类加载详细过程
一个Java文件从编码完成到最终执行,一般主要包括两个过程编译和运行
-
编译:把我们写好的java文件,通过javac命令编译成字节码,也就是我们常说的.class文件。
-
运行:是把编译生成的.class文件交给Java虚拟机(JVM)执行。
而我们所说的类加载过程即是指JVM虚拟机把.class文件中类信息加载进内存,并进行解析生成对应的class对象的过程。
举个通俗点的例子来说,JVM在执行某段代码时,遇到了class A, 然而此时内存中并没有class A的相关信息,于是JVM就会到相应的class文件中去寻找class A的类信息,并加载进内存中,这就是我们所说的类加载过程。
由此可见,JVM不是一开始就把所有的类都加载进内存中,而是只有第一次遇到某个需要运行的类时才会加载,且只加载一次。
类加载
类加载的过程主要分为三个部分:”加载”,””链接”,”“初始化”
而链接又可以细分为三个小部分:”验证”,”准备”,”解析”
加载
简单来说,加载指的是把class字节码文件从各个来源通过类加载器装载入内存中。
这里有两个重点:
- 字节码来源。一般的加载来源包括从本地路径下编译生成的.class文件,从jar包中的.class文件,从远程网络,以及动态代理实时编译
- 类加载器。一般包括启动类加载器,扩展类加载器,应用类加载器,以及用户的自定义类加载器。
为什么会有自定义类加载器?
- 一方面是由于java代码很容易被反编译,如果需要对自己的代码加密的话,可以对编译后的代码进行加密,然后再通过实现自己的自定义类加载器进行解密,最后再加载。
- 另一方面也有可能从非标准的来源加载代码,比如从网络来源,那就需要自己实现一个类加载器,从指定源进行加载。
链接
验证
主要是为了保证加载进来的字节流符合虚拟机规范,不会造成安全错误。
包括对于文件格式的验证,比如常量中是否有不被支持的常量?文件中是否有不规范的或者附加的其他信息?
对于元数据的验证,比如该类是否继承了被final修饰的类?类中的字段,方法是否与父类冲突?是否出现了不合理的重载?
对于字节码的验证,保证程序语义的合理性,比如要保证类型转换的合理性。
对于符号引用的验证,比如校验符号引用中通过全限定名是否能够找到对应的类?校验符号引用中的访问性(private,public等)是否可被当前类访问?
准备
主要是为类变量(注意,不是实例变量)分配内存,并且赋予初值。
特别需要注意,初值,不是代码中具体写的初始化的值,而是Java虚拟机根据不同变量类型的默认初始值。
比如8种基本类型的初值,默认为0;引用类型的初值则为null;常量的初值即为代码中设置的值,final static tmp = 456, 那么该阶段tmp的初值就是456
解析
将常量池内的符号引用替换为直接引用的过程。
两个重点:
- 符号引用。即一个字符串,但是这个字符串给出了一些能够唯一性识别一个方法,一个变量,一个类的相关信息。
- 直接引用。可以理解为一个内存地址,或者一个偏移量。比如类方法,类变量的直接引用是指向方法区的指针;而实例方法,实例变量的直接引用则是从实例的头指针开始算起到这个实例变量位置的偏移量
举个例子来说,现在调用方法hello(),这个方法的地址是1234567,那么hello就是符号引用,1234567就是直接引用。
在解析阶段,虚拟机会把所有的类名,方法名,字段名这些符号引用替换为具体的内存地址或偏移量,也就是直接引用。
初始化
这个阶段主要是对类变量初始化,是执行类构造器的过程。
换句话说,只对static修饰的变量或语句进行初始化。
如果初始化一个类的时候,其父类尚未初始化,则优先初始化其父类。
如果同时包含多个静态变量和静态代码块,则按照自上而下的顺序依次执行。
总结
类加载过程只是一个类生命周期的一部分,在其前,有编译的过程,只有对源代码编译之后,才能获得能够被虚拟机加载的字节码文件;在其后还有具体的类使用过程,当使用完成之后,还会在方法区垃圾回收的过程中进行卸载。如果想要了解Java类整个生命周期的话,可以自行上网查阅相关资料,这里不再多做赘述。
(3) 三种JVM:
① Sun公司的HotSpot;
② BEA公司的JRockit;
③ IBM公司的J9 JVM;
在JDK1.7及其以前我们所使用的都是Sun公司的HotSpot,但由于Sun公司和BEA公司都被oracle收购,jdk1.8将采用Sun公司的HotSpot和BEA公司的JRockit两个JVM中精华形成jdk1.8的JVM。
3.JVM的体系结构
(1) Class Loader类加载器
负责加载 .class文件,class文件在文件开头有特定的文件标示,并且ClassLoader负责class文件的加载等,至于它是否可以运行,则由Execution Engine决定。 ① 定位和导入二进制class文件 ② 验证导入类的正确性 ③ 为类分配初始化内存 ④ 帮助解析符号引用.
(2) Native Interface本地接口:
本地接口的作用是融合不同的编程语言为Java所用,它的初衷是融合C/C++程序,Java诞生的时候C/C++横行的时候,要想立足,必须有调用C/C++程序,于是就在内存中专门开辟了一块区域处理标记为native的代码,它的具体作法是Native Method Stack中登记native方法,在Execution Engine执行时加载native libraies。 目前该方法使用的越来越少了,除非是与硬件有关的应用,比如通过Java程序驱动打印机,或者Java系统管理生产设备,在企业级应用中已经比较少见。 因为现在的异构领域间的通信很发达,比如可以使用Socket通信,也可以使用Web Service等。
(3) Execution Engine 执行引擎:
执行包在装载类的方法中的指令,也就是方法。
(4) Runtime data area 运行数据区:
虚拟机内存或者Jvm内存,冲整个计算机内存中开辟一块内存存储Jvm需要用到的对象,变量等,运行区数据有分很多小区,分别为:方法区,虚拟机栈,本地方法栈,堆,程序计数器。
4.JVM数据运行区详解(栈管运行,堆管存储):
说明:JVM调优主要就是优化 Heap堆 和 Method Area 方法区。
(1) Native Method Stack本地方法栈
它的具体做法是Native Method Stack中登记native方法,在Execution Engine执行时加载native libraies。
(2) PC Register程序计数器
每个线程都有一个程序计算器,就是一个指针,指向方法区中的方法字节码(下一个将要执行的指令代码),由执行引擎读取下一条指令,是一个非常小的内存空间,几乎可以忽略不记。
(3) Method Area方法区
方法区是被所有线程共享,所有字段和方法字节码,以及一些特殊方法如构造函数,接口代码也在此定义。简单说,所有定义的方法的信息都保存在该区域,此区域属于共享区间。 静态变量+常量+类信息+运行时常量池存在方法区中,实例变量存在堆内存中。
5 Stack 栈
① 栈是什么
栈也叫栈内存,主管Java程序的运行,是在线程创建时创建,它的生命期是跟随线程的生命期,线程结束栈内存也就释放,对于栈来说不存在垃圾回收问题,只要线程一结束该栈就Over,生命周期和线程一致,是线程私有的。 基本类型的变量和对象的引用变量都是在函数的栈内存中分配。
② 栈存储什么?
栈帧中主要保存3类数据: 本地变量(Local Variables):输入参数和输出参数以及方法内的变量; 栈操作(Operand Stack):记录出栈、入栈的操作; 栈帧数据(Frame Data):包括类文件、方法等等。
③ 栈运行原理
栈中的数据都是以栈帧(Stack Frame)的格式存在,栈帧是一个内存区块,是一个数据集,是一个有关方法和运行期数据的数据集,当一个方法A被调用时就产生了一个栈帧F1,并被压入到栈中,A方法又调用了B方法,于是产生栈帧F2也被压入栈,B方法又调用了C方法,于是产生栈帧F3也被压入栈…… 依次执行完毕后,先弹出后进......F3栈帧,再弹出F2栈帧,再弹出F1栈帧。
遵循“先进后出”/“后进先出”原则。
6 Heap 堆
堆这块区域是JVM中最大的,应用的对象和数据都是存在这个区域,这块区域也是线程共享的,也是 gc 主要的回收区,一个 JVM 实例只存在一个堆类存,堆内存的大小是可以调节的。类加载器读取了类文件后,需要把类、方法、常变量放到堆内存中,以方便执行器执行,堆内存分为三部分:
① 新生区
新生区是类的诞生、成长、消亡的区域,一个类在这里产生,应用,最后被垃圾回收器收集,结束生命。新生区又分为两部分:伊甸区(Eden space)和幸存者区(Survivor pace),所有的类都是在伊甸区被new出来的。幸存区有两个:0区(Survivor 0 space)和1区(Survivor 1 space)。当伊甸园的空间用完时,程序又需要创建对象,JVM的垃圾回收器将对伊甸园进行垃圾回收(Minor GC),将伊甸园中的剩余对象移动到幸存0区。若幸存0区也满了,再对该区进行垃圾回收,然后移动到1区。那如果1去也满了呢?再移动到养老区。若养老区也满了,那么这个时候将产生Major GC(FullGCC),进行养老区的内存清理。若养老区执行Full GC 之后发现依然无法进行对象的保存,就会产生OOM异常“OutOfMemoryError”。
如果出现java.lang.OutOfMemoryError: Java heap space异常,说明Java虚拟机的堆内存不够。原因有二:
a.Java虚拟机的堆内存设置不够,可以通过参数-Xms、-Xmx来调整。
b.代码中创建了大量大对象,并且长时间不能被垃圾收集器收集(存在被引用)。
② 养老区
养老区用于保存从新生区筛选出来的 JAVA 对象,一般池对象都在这个区域活跃。
③ 永久区
永久存储区是一个常驻内存区域,用于存放JDK自身所携带的 Class,Interface 的元数据,也就是说它存储的是运行环境必须的类信息,被装载进此区域的数据是不会被垃圾回收器回收掉的,关闭 JVM 才会释放此区域所占用的内存。
如果出现java.lang.OutOfMemoryError: PermGen space,说明是Java虚拟机对永久代Perm内存设置不够。原因有二:
a. 程序启动需要加载大量的第三方jar包。例如:在一个Tomcat下部署了太多的应用。 b. 大量动态反射生成的类不断被加载,最终导致Perm区被占满。
说明: Jdk1.6及之前:常量池分配在永久代 。 Jdk1.7:有,但已经逐步“去永久代” 。 Jdk1.8及之后:无(java.lang.OutOfMemoryError: PermGen space,这种错误将不会出现在JDK1.8中)。
说明:方法区和堆内存的异议: 实际而言,方法区和堆一样,是各个线程共享的内存区域,它用于存储虚拟机加载的:类信息+普通常量+静态常量+编译器编译后的代码等等,虽然JVM规范将方法区描述为堆的一个逻辑部分,但它却还有一个别名叫做Non-Heap(非堆),目的就是要和堆分开。
对于HotSpot虚拟机,很多开发者习惯将方法区称之为“永久代(Parmanent Gen)”,但严格本质上说两者不同,或者说使用永久代来实现方法区而已,永久代是方法区的一个实现,jdk1.7的版本中,已经将原本放在永久代的字符串常量池移走。
常量池(Constant Pool)是方法区的一部分,Class文件除了有类的版本、字段、方法、接口等描述信息外,还有一项信息就是常量池,这部分内容将在类加载后进入方法区的运行时常量池中存放。
6.堆内存调优简介
代码测试:
public class JVMTest {
public static void main(String[] args){
long maxMemory = Runtime.getRuntime().maxMemory();//返回Java虚拟机试图使用的最大内存量。
Long totalMemory = Runtime. getRuntime().totalMemory();//返回Java虚拟机中的内存总量。
System.out.println("MAX_MEMORY ="+maxMemory +"(字节)、"+(maxMemory/(double)1024/1024) + "MB");
System.out.println("TOTAL_ MEMORY = "+totalMemory +"(字节)"+(totalMemory/(double)1024/1024) + "MB");
}
}
说明:在Run as ->Run Configurations中输入"-XX:+PrintGCDetails"可以查看堆内存运行原理图:
(1) 在jdk1.7中:
(2) 在jdk1.8中:
7.通过参数设置自动触发垃圾回收:
public class JVMTest {
public static void main(String[] args){
long maxMemory = Runtime.getRuntime().maxMemory();//返回Java虚拟机试图使用的最大内存量。
Long totalMemory = Runtime. getRuntime().totalMemory();//返回Java虚拟机中的内存总量。
System.out.println("MAX_MEMORY ="+maxMemory +"(字节)、"+(maxMemory/(double)1024/1024) + "MB");
System.out.println("TOTAL_ MEMORY = "+totalMemory +"(字节)"+(totalMemory/(double)1024/1024) + "MB");
String str = "www.baidu.com";
while(true){
str += str + new Random().nextInt(88888888) + new Random().nextInt(99999999);
}
}
}
在Run as ->Run Configurations中输入设置“-Xmx8m –Xms8m –xx:+PrintGCDetails”可以参看垃圾回收机制原理:
本文由 小马哥 创作,采用 知识共享署名4.0 国际许可协议进行许可
本站文章除注明转载/出处外,均为本站原创或翻译,转载前请务必署名
最后编辑时间为:
2021/12/19 18:56